
Linux

Security and Isolation APIs

Essentials

Michael Kerrisk

man7.org

January 2025



© 2025, man7.org Training and Consulting /
Michael Kerrisk (mtk@man7.org). All rights reserved.

These training materials have been made available for personal,
noncommercial use. Except for personal use, no part of these training
materials may be printed, reproduced, or stored in a retrieval system. These
training materials may not be redistributed by any means, electronic,
mechanical, or otherwise, without prior written permission of the author. If
you find these materials hosted on a website other than the author’s own
website (http://man7.org/), then the materials are likely being distributed
in breach of copyright. Please report such redistribution to the author.

These training materials may not be used to provide training to others
without prior written permission of the author.

Every effort has been made to ensure that the material contained herein is
correct, including the development and testing of the example programs.
However, no warranty is expressed or implied, and the author shall not be
liable for loss or damage arising from the use of these programs. The
programs are made available under Free Software licenses; see the header
comments of individual source files for details.

For information about this course, visit
http://man7.org/training/.

For inquiries regarding training courses, please contact us at
training@man7.org.

Please send corrections and suggestions for improvements to this
course material to training@man7.org.

For information about The Linux Programming Interface, please
visit http://man7.org/tlpi/.

Revision: # 6f75b3d2e02f

http://man7.org/
http://man7.org/training/
http://man7.org/tlpi/




Short table of contents

1 Course Introduction 1-1

2 Classical Privileged Programs 2-1

3 Capabilities 3-1

4 Namespaces 4-1

5 Namespaces APIs 5-1

6 User Namespaces 6-1

7 User Namespaces and Capabilities 7-1

8 Cgroups: Introduction 8-1

9 Cgroups: Other Controllers 9-1

10 Wrapup 10-1





Detailed table of contents

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Detailed table of contents

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

5 Namespaces APIs 5-1
5.1 API Overview 5-3
5.2 Creating a child process in new namespaces: clone() 5-5

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11



Detailed table of contents

7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18

10 Wrapup 10-1
10.1 Wrapup 10-3



Linux Security and Isolation APIs Essentials

Course Introduction

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15



Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15

Course prerequisites

Prerequisites

(Good) reading knowledge of C

Can log in to Linux / UNIX and use basic commands

Knowledge of make(1) is helpful

(Can do a short tutorial during first practical session for
those new to make)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-4 §1.1



Course goals

Understanding kernel mechanisms related to security and
isolation:

Set-UID and set-GID programs

Capabilities

Namespaces

Cgroups (control groups)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-5 §1.1

Lab sessions

Lots of lab sessions...

Pair/group work is strongly encouraged!
Usually gets us through practical sessions faster

⇒ so we can cover more topics

Read each exercise thoroughly before starting

I’ve seen the traps that people often fall into

⇒ exercise descriptions often include important hints

Lab sessions are not instructor down time...

⇒ One-on-one questions about course material or exercises

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-6 §1.1



Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15

System/software requirements: kernel

Kernel configuration; following should be "y" or "m"

CONFIG_AUDIT
CONFIG_CGROUPS
CONFIG_CGROUP_PIDS
CONFIG_CGROUP_FREEZER
CONFIG_CGROUP_SCHED
CONFIG_MEMCG
CONFIG_USER_NS
CONFIG_SECCOMP
CONFIG_SECCOMP_FILTER
CONFIG_CFS_BANDWIDTH
CONFIG_VETH

To see what options were used to build the running kernel:

$ cat /proc/config.gz # (if it is present)
$ cat /lib/modules/$(uname -r)/build/.config

On Debian derivatives:

$ cat /boot/config-$(uname -r)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-8 §1.2



System/software requirements: packages to install

gcc (or your preferred C compiler)

make

libseccomp-dev[el]

libcap-dev[el]

libacl1-dev / libacl-devel

libcrypt-dev / libxcrypt-devel

util-linux

libcap-ng-utils

libreadline-dev / readline-devel

sudo (and ensure that your login has sudo access)

See sudo(8), visudo(8) ; you will need to be in the wheel (or
possibly, sudo) group

inotify-tools

golang (useful for a few code examples)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-9 §1.2

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15



Course materials

Slides / course book

Source code tarball

Location sent by email

Unpacked source code is a Git repository; you can
commit/revert changes, etc

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-11 §1.3

Other resources

Manual pages

Section 2: system calls

Section 3: library functions

Section 7: overviews

Latest version online at
http://man7.org/linux/man-pages/

Latest tarball downloadable at
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-12 §1.3

http://man7.org/linux/man-pages/
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/


Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15

Common abbreviations used in slides

The following abbreviations are sometimes used in the slides:

CWD: current working
directory

EA: extended attribute

FD: file descriptor

FS: filesystem

FTM: feature test macro

GID: group ID

rGID, eGID, sGID
(real, effective,
saved set-)

IPC: interprocess
communication

NS: namespace

PID: process ID

PPID: parent process ID

UID: user ID

rUID, eUID, sUID
(real, effective,
saved set-)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-14 §1.4



Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15

Introductions: me

Programmer, trainer, writer

UNIX since 1987, Linux since mid-1990s

Active contributor to Linux
API review, testing, and documentation

API design and design review

Lots of testing, lots of bug reports, a few kernel patches

Maintainer of Linux man-pages project (2004-2021)
Documents kernel-user-space + C library APIs

Contributor since 2000

As maintainer: ≈23k commits, 196 releases

Author/coauthor of ≈440 manual pages

Kiwi in .de
(mtk@man7.org, PGP: 4096R/3A35CE5E)

@mkerrisk (feel free to tweet about the course as we go...)

http://linkedin.com/in/mkerrisk

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-16 §1.5

http://linkedin.com/in/mkerrisk


Introductions: you

In brief:

Who are you?

If virtual: where are you?

Two interesting things about you / things you like to do
when you are not in front of a keyboard

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-17 §1.5

Questions policy

General policy: ask questions any time, in one of the
following ways:

On Slack

If online, click the “Raise hand” button

I’ll usually see it, and I get to see your name as well

Or out loud

But, wait for a quiet point

And if online, please announce your name, since I might not
be able to see you

In the event that questions slow us down too much, I may
say: “batch your questions until next Question penguin slide”

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-18 §1.5



Notes

Notes



Linux Security and Isolation APIs Essentials

Classical Privileged Programs

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18



Outline

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18

Process credentials (real and effective)

Processes have credentials (user and group IDs), including:
Real user ID (rUID) and real group ID (rGID)

Tell us who process belongs to

Login shell gets these IDs from /etc/passwd

Can be retrieved using getuid() and getgid()

Effective user ID (eUID) and effective group ID (eGID)

Used (along with supplementary GIDs) for permission
checking (e.g., file access)

Can be retrieved using geteuid() and getegid()

Credentials are inherited by child of fork()

For many processes, effective credentials are same as
corresponding real credentials

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-4 §2.1



Set-user-ID and set-group-ID programs

Set-user-ID (set-group-ID) program is classical UNIX
privilege-granting mechanism:

Gives process privileges of different user (group)

Achieved by changing process effective UID (GID)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-5 §2.1

Set-UID example (privprogs/simple_setuid.c)

int main(int argc, char *argv[]) {
printf("rUID = %ld, eUID = %ld\n",

(long) getuid(), (long) geteuid());

if (argc > 1) {
int fd = open(argv[1], O_RDONLY);
if (fd >= 0)

printf("Successfully opened %s\n", argv[1]);
else

perror("Open failed");
}

exit(EXIT_SUCCESS);
}

Print process real and effective UID

If argument was supplied, try to open that file

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-6 §2.1



Set-UID example (privprogs/simple_setuid.c)

Run program as unprivileged user, attempting to open
/etc/shadow:

$ id
uid=1000(mtk) gid=1000(mtk) ...
$ ./simple_setuid /etc/shadow
rUID = 1000, eUID = 1000
Open failed: Permission denied

Real and effective UID have same value

Unprivileged UID 1000

open() fails; unprivileged user can’t open /etc/shadow

$ ls -l /etc/shadow
----------. 1 root root 1450 Jan 3 14:17 /etc/shadow

On other systems, permissions may differ, but on every
system, /etc/shadow is not publicly readable

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-7 §2.1

Creating a set-UID program

When executed, a set-UID (set-GID) program changes eUID
(eGID) of process to be same as UID (GID) of executable

Technique used by several common system programs:
passwd(1), mount(8), su(1)

To create set-UID (set-GID) program:

Ensure executable is owned by desired UID (GID)

Turn on set-UID (set-GID) mode bit of executable

chmod u+s (chmod g+s)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-8 §2.1



Set-UID example (privprogs/simple_setuid.c)

Let’s make our program set-UID-root :

$ sudo chown root simple_setuid
$ sudo chmod u+s simple_setuid

ls shows that this is a set-UID program:

$ ls -l simple_setuid
-rwsr-xr-x. 1 root mtk 27592 Jan 11 20:46 simple_setuid

“s” in user-execute permission == program is set-UID

Again run program, attempting to open /etc/shadow:

$ ./simple_setuid /etc/shadow
rUID = 1000, eUID = 0
Successfully opened /etc/shadow

Process eUID was changed to be same as UID of executable

File was successfully opened

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-9 §2.1

Privilege

A set-UID (set-GID) program gives process the “privileges”
of a different user (group)

Could be privileges of another “normal” user (or group)

So, e.g., can access files owned by that user (or group)

A set-UID-root program gives process privileges of root

Powerful

And dangerous!

Many pitfalls (especially in C)

See TLPI Ch. 38; Bishop, M. (2003) Computer Security:
Art and Science; and other sources listed in TLPI §38.12

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-10 §2.1



Outline

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18

Saved set-user-ID and saved set-group-ID

Each process has two more credentials:
saved set-user-ID (sUID) and saved set-group-ID (sGID)

Designed for use with set-UID/set-GID programs

Can be retrieved using:
getresuid(&ruid, &euid, &suid)

getresgid(&rgid, &egid, &sgid)

APIs return real, effective, and saved set IDs

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-12 §2.2



Saved set-user-ID and saved set-group-ID

Kernel does the following when execing a program
(execve()):

1 Set-UID bit enabled on executable?
⇒ process effective UID is made same as file UID

2 Set-GID bit enabled on executable?
⇒ process effective GID is made same as file GID

3 Effective IDs are copied to corresponding saved set IDs

(Done regardless of whether set-UID or set-GID bit is set)

IOW: saved set IDs record state of effective IDs at program
start up

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-13 §2.2

Saved set-user-ID and saved set-group-ID

When set-UID program is executed, credentials look like this:

Real UID

(unchanged by exec())

Unprivileged ID

Effective UID

(copied from

file owner)

Privileged ID

Saved set-user-ID

(copied from eff. UID

at program start-up)

Privileged ID

A process can switch its effective UID back and forth
between real UID and saved set-user-ID

i.e., between unprivileged and privileged states

Analogously for set-GID programs and saved set-group-ID

What is the design mistake in initial set-up of process UIDs
in above picture?

In other words: what is the first thing that a set-UID /
set-GID program should do on start-up?

(Reset effective UID to same value as real UID)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-14 §2.2



Outline

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18

Changing process credentials

General principle for all APIs that change credentials:

Privileged processes can make any changes to IDs
Privileged process ≈ process effective user ID 0

More precisely: process has appropriate Linux capability
(CAP_SETUID for UID changes, CAP_SETGID for GID
changes)

Unprivileged processes can change an ID to same value as
another of its current IDs

e.g., unprivileged seteuid() can change effective UID to
same value as real or saved set UID

[TLPI §9.7]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-16 §2.3



Changing process credentials

setresuid(ruid, euid, suid): change real, effective,
and saved set UIDs

–1 means “no change” in corresponding UID

setresgid(rgid, egid, sgid): change real, effective,
and saved set GIDs

–1 means “no change” in corresponding GID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-17 §2.3

Outline

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-ID 2-11
2.3 Changing process credentials 2-15
2.4 A few guidelines for writing privileged programs 2-18



Operate with least privilege

Generally best to hold (elevated) privilege only when
required

“Principle of least privilege”

If program is compromised while in lower privilege state,
this makes attacker’s life harder

Lower privilege when not needed, and raise temporarily as
required

i.e., switch effective ID back and forth between real and
saved set ID

If privilege will never again be needed, drop it permanently

i.e., set effective and saved set IDs to same value as real ID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-19 §2.4

Dropping and raising privileges

Drop and raise privileges:

euid = geteuid(); /* Save eUID */
setresuid(-1, getuid(), -1); /* Drop */

setresuid(-1, euid, -1); /* Raise */
/* Do privileged work */
setresuid(-1, getuid(), -1); /* Drop */

Irrevocably drop privileges:

setresuid(-1, getuid(), getuid());

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-20 §2.4



Linux Security and Isolation APIs Essentials

Capabilities

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Rationale for capabilities

Traditional UNIX privilege model divides users into two
groups:

Normal users, subject to privilege checking based on UID
and GIDs

Effective UID 0 (superuser) bypasses many of those checks

Coarse granularity is a problem:
E.g., to give a process power to change system time, we
must also give it power to bypass file permission checks

⇒ No limit on possible damage if program is compromised

[TLPI §39.1]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-4 §3.1



Rationale for capabilities

Capabilities divide power of superuser into small pieces

41 capabilities, as at Linux 6.13

Traditional superuser == process that has full set of
capabilities

Goal: replace set-UID-root programs with programs that
have capabilities

Compromise in set-UID-root binary ⇒ very dangerous

Compromise in binary with file capabilities ⇒ less dangerous

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-5 §3.1

A selection of Linux capabilities

Capability Permits process to
CAP_CHOWN Make arbitrary changes to file UIDs and GIDs
CAP_DAC_OVERRIDE Bypass file RWX permission checks
CAP_DAC_READ_SEARCH Bypass file R and directory X permission checks
CAP_IPC_LOCK Lock memory
CAP_FOWNER chmod(), utime(), set ACLs on arbitrary files
CAP_KILL Send signals to arbitrary processes
CAP_NET_ADMIN Various network-related operations
CAP_SETFCAP Set file capabilities
CAP_SETGID Make arbitrary changes to process’s (own) GIDs
CAP_SETPCAP Make changes to process’s (own) capabilities
CAP_SETUID Make arbitrary changes to process’s (own) UIDs
CAP_SYS_ADMIN Perform a wide range of system admin tasks
CAP_SYS_BOOT Reboot the system
CAP_SYS_NICE Change process priority and scheduling policy
CAP_SYS_MODULE Load and unload kernel modules
CAP_SYS_RESOURCE Raise process resource limits, override some limits
CAP_SYS_TIME Modify the system clock

More details: capabilities(7) manual page and TLPI §39.2

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-6 §3.1



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Process and file capabilities

Processes and (binary) files can each have capabilities

Process capabilities define power of process to do
privileged operations

Traditional superuser == process that has all capabilities

File capabilities are a mechanism to give a process
capabilities when it execs the file

Stored in security.capability extended attribute

(File metadata; getfattr -m – <file>)

[TLPI §39.3]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-8 §3.2



Process and file capability sets

Capability set: bit mask representing a group of capabilities

Each process† has 3‡ capability sets:

Permitted

Effective

Inheritable
†In truth, capabilities are a per-thread attribute

‡In truth, there are more capability sets

An executable file may have 3 associated capability sets:

Permitted

Effective

Inheritable

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-9 §3.2

Inheritable and ambient capabilities

As a simplification, we will largely ignore certain
capability sets:

Process and file inheritable sets

A feature misdesign that turned out not to be useful

Commonly, these sets are empty (i.e., all zeroes)

Process ambient set

Designed for a particular (less common) use case

(Serves a use case that couldn’t be solved by inheritable set)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-10 §3.2



Viewing process capabilities

/proc/PID/status fields (hexadecimal bit masks):
$ cat /proc/4091/status
...
CapInh: 0000000000000000
CapPrm: 0000000000200020
CapEff: 0000000000000000

See <sys/capability.h> for capability bit numbers
Here: CAP_KILL (bit 5), CAP_SYS_ADMIN (bit 21)

getpcaps(1) (part of libcap package):
$ getpcaps 4091
Capabilities for `4091': = cap_kill,cap_sys_admin+p

More readable notation, but a little tricky to interpret

Here, single ’=’ means all sets are empty

capsh(1) can be used to decode hex masks:
$ capsh --decode=200020
0x0000000000200020=cap_kill,cap_sys_admin

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-11 §3.2

Modifying process capabilities

A process can modify its capability sets by:
Raising a capability (adding it to set)

Synonyms: add, enable

Lowering a capability (removing it from set)

Synonyms: drop, clear, remove, disable

(APIs for changing process capabilities are capset(2),
prctl(2), and libcap library; we won’t look at these)

There are various rules about changes a process can make to
its capability sets

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-12 §3.2



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Process permitted and effective capabilities

Permitted : capabilities that process may employ

“Upper bound” on effective capability set

Once dropped from permitted set, a capability can’t be
reacquired

(But see discussion of execve() later)

Can’t drop while capability is also in effective set

Effective : capabilities that are currently in effect for process

I.e., capabilities that are examined when checking if a
process can perform a privileged operation

Capabilities can be dropped from effective set and
reacquired

Operate with least privilege....

Reacquisition possible only if capability is in permitted set

[TLPI §39.3.3]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-14 §3.3



File permitted and effective capabilities

Permitted : a set of capabilities that may be added to
process’s permitted set during exec()

Effective : " a single bit that determines state of process’s
new effective set after exec() :

If set, all capabilities in process’s new permitted set are also
enabled in effective set

If not set, process’s new effective set is empty

File capabilities allow implementation of capabilities analog
of set-UID-root program

Notable difference: setting effective bit off allows a program
to start in unprivileged state

Set-UID/set-GID programs always start in privileged state

[TLPI §39.3.4]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-15 §3.3

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39



Setting and viewing file capabilities from the shell

setcap(8) sets capabilities on files
Requires privilege (CAP_SETFCAP)

E.g., to set CAP_SYS_TIME as a permitted and effective
capability on an executable file:

$ cp /bin/date mydate
$ sudo setcap "cap_sys_time=pe" mydate

getcap(8) displays capabilities associated with a file

$ getcap mydate
mydate = cap_sys_time+ep

filecap(8) searches for files that have capabilities:
$ filecap # Report files in $PATH
$ sudo filecap -a 2> /dev/null # Check all files on system

# "2>" to discard "not supported" messages

filecap is part of the libcap-ng-utils package

[TLPI §39.3.6]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-17 §3.4

cap/demo_file_caps.c

int main(int argc, char *argv[]) {
cap_t caps = cap_get_proc(); /* Fetch process capabilities */
char *str = cap_to_text(caps, NULL);
printf("Capabilities: %s\n", str);
...
if (argc > 1) {

fd = open(argv[1], O_RDONLY);
if (fd >= 0)

printf("Successfully opened %s\n", argv[1]);
else

printf("Open failed: %s\n", strerror(errno));
}
exit(EXIT_SUCCESS);

}

Display process capabilities

Report result of opening file named in argv[1] (if present)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-18 §3.4



cap/demo_file_caps.c

$ id -u
1000
$ cc -o demo_file_caps demo_file_caps.c -lcap
$ ./demo_file_caps /etc/shadow
Capabilities: =
Open failed: Permission denied
$ ls -l /etc/shadow
----------. 1 root root 1974 Mar 15 08:09 /etc/shadow

All steps in demos are done from unprivileged user ID 1000

Binary has no capabilities ⇒ process gains no capabilities

open() of /etc/shadow fails

Because /etc/shadow is readable only by privileged process

Process needs CAP_DAC_READ_SEARCH capability

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-19 §3.4

cap/demo_file_caps.c

$ sudo setcap cap_dac_read_search=p demo_file_caps
$ ./demo_file_caps /etc/shadow
Capabilities: = cap_dac_read_search+p
Open failed: Permission denied

Binary confers permitted capability to process, but capability
is not effective

Process gains capability in permitted set

open() of /etc/shadow fails

Because CAP_DAC_READ_SEARCH is not in effective set

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-20 §3.4



cap/demo_file_caps.c

$ sudo setcap cap_dac_read_search=pe demo_file_caps
$ ./demo_file_caps /etc/shadow
Capabilities: = cap_dac_read_search+ep
Successfully opened /etc/shadow

Binary confers permitted capability and has effective bit on

Process gains capability in permitted and effective sets

open() of /etc/shadow succeeds

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-21 §3.4

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39



Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-23 §3.5

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-24 §3.5



Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-25 §3.5

Exercises

1 Compile and run the cap/demo_file_caps program, without adding
any capabilities to the file, and verify that when you run the binary, the
process has no capabilities:

$ cc -o demo_file_caps demo_file_caps.c -lcap
$ ./demo_file_caps

The string “=” means all capability sets empty.

2 Now make the binary set-UID-root :

$ sudo chown root demo_file_caps # Change owner to root
$ sudo chmod u+s demo_file_caps # Turn on set-UID bit
$ ls -l demo_file_caps # Verify
-rwsr-xr-x. 1 root mtk 8624 Oct 1 13:19 demo_file_caps

3 Run the binary and verify that the process gains all capabilities. (The
string “=ep” means “all capabilities in the permitted + effective sets”.)

If the process does not gain all capabilities, check whether the filesystem is
mounted with the nosuid option (findmnt -T <dir>). If it is, either
remount the filesystem without that option or do the exercise on a filesystem
that is not mounted with nosuid (typically, /tmp should work).

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-26 §3.5



Exercises

4 Take the existing set-UID-root binary, add a permitted capability to it,
and set the effective capability bit:

$ sudo setcap cap_dac_read_search=pe demo_file_caps

5 When you now run the binary, what capabilities does the process have?

6 Suppose you assign empty capability sets to the binary. When you
execute the binary, what capabilities does the process then have?

$ sudo setcap = demo_file_caps

7 Use the following command to remove capabilities from the binary and
verify that when executed, the binary once more grants all capabilities
to the process:

$ sudo setcap -r demo_file_caps

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-27 §3.5

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39



Textual representation of capabilities

Both setcap(8) and getcap(8) work with textual
representations of capabilities

Syntax described in cap_from_text(3) manual page

String read left to right, containing space-separated clauses

(The capability sets are initially considered to be empty)

Clause: caps-list operator flags [ operator flags ] ...

caps-list is comma-separated list of capability names, or all

operator is +, -, or =

flags is zero or more of p (permitted), e (effective), or
i (inheritable)

Clause can contain multiple [operator flags ] parts:

E.g., "cap_sys_time+p-i" (is same as
"cap_sys_time+p cap_sys_time-i")

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-29 §3.6

Textual representation of capabilities

Operators:

+ operator: raise capabilities in sets specified by flags

- operator: lower capabilities in sets specified by flags

= operator:

Raise capabilities in sets specified by flags ;
lower those capabilities in remaining sets

So, "CAP_KILL=p" is same as "CAP_KILL+p-ie"

caps-list can be omitted; defaults to all

flags can be omitted ⇒ clear capabilities from all sets
⇒ Thus : "=" means clear all capabilities in all sets

What does "=p cap_kill,cap_sys_admin+e" mean?

All capabilities in permitted set, plus CAP_KILL and
CAP_SYS_ADMIN in effective set

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-30 §3.6



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Exercises

1 What capability bits are enabled by each of the following text-form capability
specifications?

"=p"

"="

"cap_setuid=p cap_sys_time+pie"

"=p cap_kill-p"

"cap_kill=p = cap_sys_admin+pe"

"cap_chown=i cap_kill=pe cap_setfcap,cap_chown=p"

2 The program cap/cap_text.c takes a single command-line argument,
which is a text-form capability string. It converts that string to an
in-memory representation and then iterates through the set of all capabilities,
printing out the state of each capability within the permitted, effective, and
inheritable sets. It thus provides a method of verifying your interpretation of
text-form capability strings. Try supplying each of the above strings as an
argument to the program (remember to enclose the entire string in
quotes!) and check the results against your answers to the previous exercise.

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-32 §3.7



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Transformation of process capabilities during exec

During execve(), process’s capabilities are transformed:

P′(perm) = F(perm) & P(bset)

P′(eff) = F(eff) ? P′(perm) : 0

P() / P’() : process capability set before/after exec

F() : file capability set (of file that is being execed)

New permitted set for process comes from file permitted set
ANDed with capability bounding set (bset)

" Note that P(perm) has no effect on P’(perm)

New effective set is either 0 or same as new permitted set

" Transformation rules above are a simplification that
ignores process+file inheritable sets and process ambient set

In most cases, those sets are empty (i.e., 0)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-34 §3.8



Transformation of process capabilities during exec

Commonly, process bounding set contains all capabilities
Removing capabilities from bounding set provides a way to
limit capabilities that process gains during execve()

(We won’t go into further detail on bounding set)

Therefore transformation rule for process permitted set:

P′(perm) = F(perm) & P(bset)

commonly simplifies to:

P′(perm) = F(perm)

[TLPI §39.5]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-35 §3.8

Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39



Capabilities and UID transitions

Various system calls change process credentials, subject to
rules:

If process has CAP_SETUID (CAP_SETGID), arbitrary
changes can be made to UIDs (GIDs)

Otherwise, can change ID only to value of another ID in
same category

E.g., effective UID can be made same as real UID or saved
set-UID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-37 §3.9

Capabilities and UID transitions

What is effect on process capabilities for transitions to/from
UID 0?

If rUID, eUID, or sUID was zero, and set*uid() renders
them all nonzero:

Permitted, effective, and ambient sets are cleared

If eUID changes from zero to nonzero value:

Effective capability set is cleared

If eUID changes from nonzero value to 0:

Permitted set is copied to effective set

(Transition possible even if CAP_SETUID is not in process’s
effective set, so long as either rUID or sUID is 0)

This behavior maps traditional privilege semantics of
set-UID-root programs onto capabilities model

[TLPI §39.6]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-38 §3.9



Outline

3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-33
3.9 Capabilities and UID transitions 3-36
3.10 Exercises 3-39

Exercises

The cap/setuid_root_cap_dumb.c program can be used to verify the
effect of UID transitions on process capabilities. This program uses various
set*uid() calls to change the process’s UIDs between zero and nonzero
values, and prints out the state of the process’s capabilities after each step.

1 Read the code of the main() function to understand what the program
is doing (ignore the use of a command-line argument that triggers the
use of SECBIT_NO_SETUID_FIXUP), and then compile it:

$ 'PS1='$ '
$ cc -o setuid_root_cap_dumb setuid_root_cap_dumb.c -lcap # Or use make(1)

2 Make the program set-UID-root ; assign a file permitted capability and
enable the file effective capability bit:

$ sudo chown root setuid_root_cap_dumb
$ sudo chmod u+s setuid_root_cap_dumb # Turn on set-UID bit
$ sudo setcap cap_setpcap=pe setuid_root_cap_dumb

3 Run the program and explain the results:

$ ./setuid_root_cap_dumb

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-40 §3.10



Linux Security and Isolation APIs Essentials

Namespaces

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31



Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

Namespaces

A namespace (NS) “wraps” some global system resource to
provide resource isolation

Linux supports multiple NS types

UTS, mount, network, ..., each governing different resources

For each NS type:
Multiple instances of NS may exist on a system

At system boot, there is one instance of each NS type–the
so-called initial namespace instance

Each process resides in one NS instance

To processes inside NS instance, it appears that only they
can see/modify corresponding global resource

Processes are unaware of other instances of resource

When new process is created via fork(), it resides in same
set of NSs as parent

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-4 §4.1



Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

UTS namespaces

UTS NSs are simple, and so provide an easy example

Isolate two system identifiers returned by uname(2)

nodename : system hostname (set by sethostname(2))

domainname : NIS domain name (set by
setdomainname(2))

Container configuration scripts might tailor their actions
based on these IDs

E.g., nodename could be used with DHCP, to obtain IP
address for container

“UTS” comes from struct utsname argument of uname(2)

Structure name derives from “UNIX Timesharing System”

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-6 §4.2



UTS namespaces

Running system may have multiple UTS NS instances

Processes within single instance access (get/set) same
nodename and domainname

Each NS instance has its own nodename and domainname

Changes to nodename and domainname in one NS instance
are invisible to other instances

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-7 §4.2

UTS namespace instances

Initial UTS NS

hostname: bienne

UTS NS X

hostname: tekapo

UTS NS Y

hostname: pukaki

Each UTS NS contains a set of processes (the circles) which
see/modify same hostname (and domain name, not shown)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-8 §4.2



Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

Some “magic” symlinks

Each process has some symlink files in /proc/PID/ns

/proc/PID/ns/cgroup # Cgroup NS instance
/proc/PID/ns/ipc # IPC NS instance
/proc/PID/ns/mnt # Mount NS instance
/proc/PID/ns/net # Network NS instance
/proc/PID/ns/pid # PID NS instance
/proc/PID/ns/time # Time NS instance
/proc/PID/ns/user # User NS instance
/proc/PID/ns/uts # UTS NS instance

One symlink for each of the NS types

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-10 §4.3



Some “magic” symlinks

Target of symlink tells us which NS instance process is in:

$ readlink /proc/$$/ns/uts
uts:[4026531838]

Content has form: ns-type :[magic-inode-#]

(inode-# comes from internally mounted NS filesystem)

Various uses for these symlinks, including:

If processes show same symlink target, they are in
same NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-11 §4.3

The unshare(1) and nsenter(1) commands

There are shell commands for working with namespaces...

unshare(1) creates new NSs and executes a command in
those NSs:

unshare [options] [command [arg...]]

command defaults to sh

nsenter(1) steps into already existing NS(s) and executes a
command:

nsenter [options] [command [arg...]]

command defaults to sh

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-12 §4.3



The unshare(1) and nsenter(1) commands

unshare(1) and nsenter(1) have options for specifying NS types:

unshare [options] [command [arguments]]
-C Create new cgroup NS
-i Create new IPC NS
-m Create new mount NS
-n Create new network NS
-p Create new PID NS
-T Create new time NS
-u Create new UTS NS
-U Create new user NS

nsenter [options] [command [arguments]]
-t PID PID of process whose NSs should be entered
-C Enter cgroup NS of target process
-i Enter IPC NS of target process
-m Enter mount NS of target process
-n Enter network NS of target process
-p Enter PID NS of target process
-T Enter time NS of target process
-u Enter UTS NS of target process
-U Enter user NS of target process
-a Enter all NSs of target process

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-13 §4.3

Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31



Demo

Start two terminal windows (sh1, sh2) in initial UTS NS

sh1$ hostname # Show hostname in initial UTS NS
bienne

sh2$ hostname
bienne

In sh2, create new UTS NS, and change hostname

$ SUDO_PS1='sh2# ' sudo unshare -u bash --norc
sh2# hostname langwied # Change hostname
sh2# hostname # Verify change
langwied

sudo(8) because we need privilege (CAP_SYS_ADMIN) to
create a UTS NS

We set SUDO_PS1 so shell has a distinctive prompt. Setting this
environment variable causes sudo(8) to set PS1 for the command that
it executes. (PS1 defines the prompt displayed by the shell.) The
bash --norc option prevents the execution of shell start-up scripts that
might modify PS1.

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-15 §4.4

Demo

In sh1, verify that hostname is unchanged:

sh1$ hostname
bienne

Compare /proc/PID/ns/uts symlinks in two shells

sh1$ readlink /proc/$$/ns/uts
uts:[4026531838]

sh2# readlink /proc/$$/ns/uts
uts:[4026532855]

The two shells are in different UTS NSs

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-16 §4.4



Demo

Discover the PID of sh2 :

sh2# echo $$
5912

From sh1, use nsenter(1) to create a new shell that is in
same NS as sh2 :

sh1$ SUDO_PS1='sh3# ' sudo nsenter -t 5912 -u
sh3# hostname
langwied
sh3# readlink /proc/$$/ns/uts
uts:[4026532855]

Comparing the symlink values, we can see that this shell
(sh3#) is in the second (sh2#) UTS NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-17 §4.4

Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31



Namespace APIs

Programs can use various system calls to work with NSs:

clone(2) : create new (child) process in new NS(s)

unshare(2) : create new NS(s) and move caller into it/them

Used by unshare(1) command

setns(2) : move calling process to another (existing) NS
instance

Used by nsenter(1) command

(We revisit these APIs in detail later)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-19 §4.5

The Linux namespaces

Linux supports following NS types:

Mount CLONE_NEWNS 2002 (v2.4.19)
UTS CLONE_NEWUTS 2006 (v2.6.19)
IPC CLONE_NEWIPC 2006 (v2.6.19)
PID CLONE_NEWPID 2008 (v2.6.24)
Network CLONE_NEWNET 2009 (≈v2.6.29)
User CLONE_NEWUSER 2013 (v3.8)
Cgroup CLONE_NEWCGROUP 2016 (v4.6)
Time CLONE_NEWTIME 2020 (v5.6)

Above list includes corresponding clone() flag and year +
kernel version for “milestone” release

Note: we won’t cover all NS types in this course

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-20 §4.5



Privilege requirements for creating namespaces

Creating user NS instances requires no privileges

Creating instances of other (nonuser) NS types requires
privilege

CAP_SYS_ADMIN

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-21 §4.5

Combining namespace types

It’s possible to use individual NS types

E.g., mount NSs (first NS type) were invented to solve
specific use cases

But, often, several NS types are combined for an application
E.g., the use of PID, IPC, or cgroup NSs typically requires
corresponding use of mount NSs

Because certain filesystems are commonly mounted for PID,
IPC, and cgroup NSs

In container-style frameworks, most or all NS types are used
in concert

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-22 §4.5



Sources of further information

See my LWN.net article series Namespaces in operation

https://lwn.net/Articles/531114/

Many example programs and shell sessions...

Source code tarball for course includes all of that code, with
a few important updates

A few details have subsequently changed (see my
post-publication comments at end of some articles)

namespaces(7), user_namespaces(7), pid_namespaces(7),
mount_namespaces(7), cgroup_namespaces(7), uts_namespaces(7),
network_namespaces(7), time_namespaces(7), ipc_namespaces(7)

“Linux containers in 500 lines of code”
https://blog.lizzie.io/linux-containers-in-500-loc.html

(But note: uses cgroups v1)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-23 §4.5

Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

https://lwn.net/Articles/531114/
https://blog.lizzie.io/linux-containers-in-500-loc.html


Mount namespaces (CLONE_NEWNS)

First namespace type (merged into mainline in 2002)

Isolation of set of mounts seen by process(es)
A mount is a tuple that includes:

Mount source (e.g., device)

Pathname (mount point)

ID of parent mount

Mount NSs allow processes to see distinct sets of mounts

Process’s view of filesystem (FS) tree is defined by
(hierarchically related) set of mounts

⇒ processes in different mount NSs see different FS trees

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-25 §4.6

Mount namespaces (CLONE_NEWNS)

Created via clone() or unshare() with CLONE_NEWNS flag

NS == “new namespace”: no one foresaw that there might
be further NS types...

New NS inherits copy of mount list from NS of creating
process

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-26 §4.6



Mount namespaces: use cases

Per-process, private filesystem trees

(See also pam_namespace(8))

Mount new /proc FS without side effects

Useful when creating PID NS

(There are analogous use cases for IPC and cgroup NSs)

Jailing in the manner of chroot, but more flexible and secure

Can set process up with different root directory, and subset
of available filesystems

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-27 §4.6

Mount namespaces demo

In first terminal window (in initial mount NS), create a
directory to be used as root of small tree of mounts:

$ mkdir /tmp/x

Mount a tmpfs filesystem at that location, and create further
directories that will be used as (child) mount points:

$ sudo mount -t tmpfs none /tmp/x
$ mkdir /tmp/x/{aaa,bbb}

In a second terminal, create a new mount NS (NS 2), and
create a new mount (/tmp/x/bbb) in that NS:

$ SUDO_PS1='ns2# ' sudo unshare --mount bash --norc
ns2# mount -t tmpfs none /tmp/x/bbb

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-28 §4.6



Mount namespaces demo

Verify the subtree of mounts in NS 2:

ns2# findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/bbb

In first terminal (initial NS), create a mount (/tmp/x/aaa),
and verify that mount /tmp/x/bbb is not present:

$ sudo mount -t tmpfs none /tmp/x/aaa
$ findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/aaa

Show that /tmp/x/aaa mount is not present in NS 2:

$ findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
`-/tmp/x/bbb

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-29 §4.6

Shared subtrees and mount propagation

For time reasons, we will omit some important features:

Shared subtrees and mount propagation types

Allow (controlled, partial) reversal of isolation provided by
mount NSs

IOW: initial mount NS implementation provided too much
isolation for various use cases

Permit mount/unmount events in one mount NS to
automatically propagate to other mount NSs

Classic example use case: mount optical disk in one NS,
and have mount appear in all NSs

See mount_namespaces(7)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-30 §4.6



Outline

4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APIs 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31

PID namespaces (CLONE_NEWPID)

Isolate process ID number space

⇒ processes in different PID NSs can have same PID

Benefits:
Allow processes inside containers to maintain same PIDs
when container is migrated to different host

“Container live migration”, implemented using CRIU (“Checkpoint
restore in userspace”); https:

//lisas.de/~adrian/container-live-migration-article.pdf,
https://www.youtube.com/watch?v=FwbZuRMdO94

Allows per-container init process (PID 1) that manages
container initialization and reaping of orphaned children

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-32 §4.7

https://lisas.de/~adrian/container-live-migration-article.pdf
https://lisas.de/~adrian/container-live-migration-article.pdf
https://www.youtube.com/watch?v=FwbZuRMdO94


PID namespace hierarchies

Unlike (most) other NS types, PID NSs form a hierarchy

Each PID NS has a parent, going back to initial PID NS

Parent of PID NS is PID NS of caller of clone() or
unshare()

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-33 §4.7

PID namespace hierarchies

A process is a member of its immediate PID NS, but is also
visible in each ancestor PID NS

Process will (typically) have different PID in each PID NS in
which it is visible!

A process in initial PID NS can “see” all processes in all
PID NSs

See == employ syscalls on, send signals to, ...

A processes in a lower NS won’t be able to “see” any
processes that are members only of ancestor NSs

Can see only peers in same NS + members of descendant
NSs

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-34 §4.7



A PID namespace hierarchy

A process is also visible in all ancestor PID namespaces

1 304 321

1

326

3

513

9

1

539

21

5

391 420

1

433

2

Initial namespace

Child namespace Child namespace

Grandchild namespace

PID

PID

PID in ancestor

namespace

PID

namespace

fork()

clone()

CLONE_NEWPID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-35 §4.7

PID namespaces and PIDs

getpid() returns caller’s PID inside caller’s PID NS

When making syscalls and using /proc in outer NSs, process
in a descendant NS is referred to by its PID in caller’s NS

A caller’s parent might be in a different PID NS

getppid() returns 0!

Via /proc/PID/status, we can see process’s IDs in PID
NSs of which it is a member

NStgid: thread group ID (PID!) in successively nested PID
NSs, starting (at left) from NS of reading process

NSpid: thread(!) ID in successively nested PID namespaces

See proc(5) and namespaces/pid_namespaces.go

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-36 §4.7



PID namespaces and /proc/PID

/proc/PID directories contain info about processes
corresponding to a PID NS

Allows us to introspect system

Without /proc, many systems tools will fail to work

ps, top, etc.

Some library functions also rely on /proc

E.g., fexecve(3)

⇒ create new mount NS at same time, and remount /proc

To mount /proc:

mount -t proc proc /proc

Or use mount(2) :

mount("proc", "/proc", "proc", 0, NULL)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-37 §4.7

PID namespaces and /proc/PID

Mount and PID namespaces are orthogonal

In new PID NS, we’ll see /proc/PID of parent NS until we
stack a new mount on /proc

But note: /proc/self always provides process with info
about itself, regardless of whether /proc corresponds to
process’s PID NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-38 §4.7



PID namespaces and init

First process inside new PID NS is special:

Gets PID 1 (inside the NS)

Fulfills role of init

Performs “system” initialization

Becomes parent of orphaned children

If killed/terminated, all other processes in NS are terminated
(SIGKILL), and NS is torn down

And it is no longer possible to fork() new processes into NS
(after unshare() or setns())

(All of the above perfectly supports model of containers as
virtual systems)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-39 §4.7

PID namespaces demo

Create a PID NS and mount a /proc filesystem for that NS:

$ sudo unshare --pid --fork --mount-proc dash

Inside PID NS, display PID of shell, and start a sleep process
and display its PID:

# echo $$
1
# sleep 1000 &
# pidof sleep # 'pidof' used PID 3
2

Take a look in /proc:

# ls -1 /proc
1 # dash
2 # sleep
4 # ls
acpi
...

PIDs outside NS are not visible
Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-40 §4.7



PID namespaces demo

From another terminal window (in initial PID NS), display
PID of dash and sleep :

$ pidof dash
22645
$ pidof sleep
22677

Processes are visible outside NS, but with different PIDs!

If we kill init process of a PID NS, all other processes in NS
are also killed:

$ sudo kill -9 22645 # Kill PID 1 in inner NS
$ sudo kill -9 22677 # Is 'sleep' process still present?
bash: kill: (22677) - No such process

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-41 §4.7

Notes



Notes

Notes



Linux Security and Isolation APIs Essentials

Namespaces APIs

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

5 Namespaces APIs 5-1
5.1 API Overview 5-3
5.2 Creating a child process in new namespaces: clone() 5-5



Outline

5 Namespaces APIs 5-1
5.1 API Overview 5-3
5.2 Creating a child process in new namespaces: clone() 5-5

Overview of namespaces API

System calls:

clone() : create new NS(s) (while creating new process)

unshare() : create new NS(s) and move caller into it/them

Analogous shell command: unshare(1)

clone() and unshare() can employ one (or more) of flags:
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,

CLONE_NEWNS, CLONE_NEWPID, CLONE_NEWTIME (unshare only),

CLONE_NEWUSER, CLONE_NEWUTS

Creating new NS instance requires CAP_SYS_ADMIN

Except user NSs, which require no capabilities

setns() : move caller to another (existing) NS instance

Analogous shell command: nsenter(1)

/proc files

/proc/PID/ns/* files (+ other NS-specific files)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-4 §5.1



Outline

5 Namespaces APIs 5-1
5.1 API Overview 5-3
5.2 Creating a child process in new namespaces: clone() 5-5

The clone() system call

#include <sched.h>
int clone(int (*child_func)(void *), void *stack,

int flags, void *arg);

Creates new child process (like fork())

Much lower-level API that gives control of many facets of
process/thread creation

Used to implement pthread_create()

Can be used to implement fork() (glibc does this)

Above prototype is actually for glibc clone() wrapper
function

Underlying syscall has somewhat different arguments

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-6 §5.2



The clone() system call

#include <sched.h>
int clone(int (*child_func)(void *), void *stack,

int flags, void *arg);

Returns PID of new process as function result

New process begins execution by calling ”start” function
child_func, of form:

int child_func(void *arg) {
...

}

arg is argument to be given in call to child_func

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-7 §5.2

The clone() system call

#include <sched.h>
int clone(int (*child_func)(void *), void *stack,

int flags, void *arg);

flags consists of flag bits ORed with signal number

Signal is delivered to caller when child terminates (like
traditional SIGCHLD)

20+ flag bits spanning many different pieces of functionality

Use one or more of CLONE_NEW* flags to place new process
in newly created namespace(s)

stack points to top of region to be used for child’s
(downwardly growing) stack

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-8 §5.2



Create a (new process and) new namespace with clone()

demo_uts_namespaces <hostname>

Uses clone() to create child process in new UTS namespace

Child changes hostname in new UTS namespace

Parent and child fetch (uname(2)) and display hostname

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-9 §5.2

namespaces/demo_uts_namespaces.c

int main(int argc, char *argv[]) {
struct utsname uts;
char *stack = mmap(..., STACK_SIZE, ...);
...
pid_t child_pid = clone(childFunc, stack + STACK_SIZE,

CLONE_NEWUTS | SIGCHLD, argv[1]);
munmap(stack, STACK_SIZE);
sleep(1);
uname(&uts);
printf("uts.nodename in parent: %s\n", uts.nodename);
waitpid(child_pid, NULL, 0); /* Wait for child */

}

clone() creates new child process

CLONE_NEWUTS creates new UTS NS

New process is placed in that NS

Sleep, so child has time to change and display hostname

Fetch and display hostname of parent’s UTS NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-10 §5.2



namespaces/demo_uts_namespaces.c

static int childFunc(void *arg) {
sethostname(arg, strlen(arg));

struct utsname uts;
uname(&uts);
printf("uts.nodename in child: %s\n", uts.nodename);
sleep(1000);
return 0; /* Terminates child */

}

“Start” function executed by child created by clone()

Change hostname in child’s UTS NS

Fetch and display hostname of child’s UTS NS

Sleep for a while, so child and NS continue to exist

Child terminates when “start” function returns

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-11 §5.2

namespaces/demo_uts_namespaces.c

Running the program demonstrates that the parent and child are
in separate UTS namespaces:

$ uname -n # Show hostname in initial UTS namespace
bienne
$ sudo ./demo_uts_namespaces tekapo
PID of child created by clone() is 14958
uts.nodename in child: tekapo
uts.nodename in parent: bienne

Privilege is needed to create the new UTS NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-12 §5.2



Linux Security and Isolation APIs Essentials

User Namespaces

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29



Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29

Introduction

Milestone release: Linux 3.8 (Feb 2013)

User NSs can now be created by unprivileged users...

Allow per-namespace mappings of UIDs and GIDs

I.e., process’s UIDs and GIDs inside NS may be different
from IDs outside NS

Interesting use case: process has nonzero UID outside NS,
and UID of 0 inside NS

⇒ Process has root privileges for operations inside user NS

We will learn what this means...

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-4 §6.1



Relationships between user namespaces

User NSs have a hierarchical relationship:

A user NS can have 0 or more child user NSs

Each user NS has parent NS, going back to initial user NS

Initial user NS == sole user NS that exists at boot time

Parent of a user NS == user NS of process that created
this user NS using clone() or unshare()

Parental relationship determines some rules about how
capabilities work in NSs (later...)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-5 §6.1

Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29



Creating and joining a user NS

New user NS is created with CLONE_NEWUSER flag

clone() ⇒ child is made a member of new user NS

unshare() ⇒ caller is made a member of new user NS

Can join an existing user NS using setns()
Process must have CAP_SYS_ADMIN capability in target NS

(The capability requirement will become clearer later)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-7 §6.2

User namespaces and capabilities

A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

It is the child of clone() that creates a new user NS

It creates and joins a new user NS using unshare()

It joins an existing user NS using setns()

But, process has no capabilities in parent/previous user NS
" Even if it was root in that NS!

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-8 §6.2



Example: namespaces/demo_userns.c

./demo_userns

(Very) simple user NS demonstration program

Uses clone() to create child in new user NS

Child displays its UID, GID, and capabilities

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-9 §6.2

Example: namespaces/demo_userns.c

#define STACK_SIZE (1024 * 1024)

int main(int argc, char *argv[]) {
char *stack = mmap(..., STACK_SIZE); /* Allocate memory for

child's stack */
pid_t pid = clone(childFunc, stack + STACK_SIZE,

CLONE_NEWUSER | SIGCHLD, argv[1]);
printf("PID of child: %ld\n", (long) pid);

munmap(stack, STACK_SIZE); /* Deallocate stack */

waitpid(pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Use clone() to create a child in a new user NS

Child will execute childFunc(), with argument argv[1]

Printing PID of child is useful for some demos...

Wait for child to terminate

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-10 §6.2



Example: namespaces/demo_userns.c

static int childFunc(void *arg) {
for (;;) {

printf("eUID = %ld; eGID = %ld; ",
(long) geteuid(), (long) getegid());

cap_t caps = cap_get_proc();
char *str = cap_to_text(caps, NULL);
printf("capabilities: %s\n", str);
cap_free(caps);
cap_free(str);

if (arg == NULL)
break;

sleep(5);
}
return 0;

}

Display PID, effective UID + GID, and capabilities

If arg (argv[1] ) was NULL, break out of loop

Otherwise, redisplay IDs and capabilities every 5 seconds

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-11 §6.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Upon running the program, we’ll see something like the above

Program was run from unprivileged user account

=ep means child process has a full set of permitted and
effective capabilities

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-12 §6.2



Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Displayed UID and GID are “strange”

System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides

But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS

⇒ when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid

Unmapped GIDs ⇒ /proc/sys/kernel/overflowgid

Default value, 65534, chosen to be same as NFS nobody ID

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-13 §6.2

Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29



UID and GID mappings

One of first steps after creating a user NS is to define UID
and GID mapping for NS

Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid_map

Each process in user NS has these files; writing to files of
any process in the user NS suffices

Initially, these files are empty

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-15 §6.3

UID and GID mappings

Records written to/read from uid_map and gid_map have
this form:

ID-inside-ns ID-outside-ns length

ID-inside-ns and length define range of IDs inside user NS
that are to be mapped

ID-outside-ns defines start of corresponding mapped range
in “outside” user NS

E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

0 1000 10

" To properly understand ID-outside-ns, we must first look
at a picture

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-16 §6.3



Understanding UID and GID maps

Initial user NS (NS 0)

1000 1009 1014 1020 1029

Child NS 2

Map: 50 1000 15

50 64

Child NS 1

Map: 0 1000 10

0 9

Child NS 4

Map: 0 1020 10

0 9

Child NS 3

Map: 10 50 10

0 9

10 19

”What does ID X in namespace Y map to in namespace Z?” means
“what is the equivalent ID (if any) in namespace Z?”

What does ID 5 in NS 1 map to in the initial NS (NS 0)?

What does ID 5 in NS 1 map to in NS 2 and NS 3?

What does ID 15 in NS 3 map to in NS 2 and NS 1?

What does the UID 0 in NS 4 map to in NS 1?

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-17 §6.3

Interpretation of ID-outside-ns

" Interpretation of ID-outside-ns depends on whether
process opening uid_map/gid_map is in same NS as PID

NB: contents of uid_map/gid_map are generated on the fly
by the kernel, and can be different in different processes

If “opener” and PID are in same user NS:

ID-outside-ns interpreted as ID in parent user NS of PID

Common case: process is writing its own mapping file

If “opener” and PID are in different user NSs:

ID-outside-ns interpreted as ID in opener’s user NS

Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

" Only ID-outside-ns is interpreted; ID-inside-ns and length
are always treated literally

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-18 §6.3



Quiz: reading /proc/PID/uid_map

Initial user NS

Child user NS

uid_map: 200 1000 1

Contains PID 2366

Child user NS

uid_map: 0 1000 1

Contains PID 2571

If PID 2366 reads /proc/2571/uid_map, what should it see?

0 200 1

If PID 2571 reads /proc/2366/uid_map, what should it see?

200 0 1

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-19 §6.3

Example: updating a mapping file

Let’s run demo_userns with an argument, so it loops:

$ id -u # Display user ID of shell
1000
$ id -G # Display group IDs of shell
1000 10
$ ./demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities: =ep

Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:

echo '0 1000 1' > /proc/2810/uid_map

Returning to window where we ran demo_userns, we see:

eUID = 0; eGID = 65534; capabilities: =ep

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-20 §6.3



Example: updating a mapping file

But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:

$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted

There are (many) rules governing updates to mapping files

Inside the new user NS, user is getting full capabilities

It is critical that capabilities can’t leak

I.e., user must not get more privileges than they would
otherwise have outside the NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-21 §6.3

Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:

There is a limit on the number of lines that may be written

Since Linux 4.15 (2017): up to 340 lines

Linux 4.14 and earlier: up to 5 lines

Each line contains 3 valid numbers, with length > 0, and a
newline terminator

The ID ranges specified by the lines may not overlap

(Because that would make IDs ambiguous)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-22 §6.3



Permission rules for updating mapping files

If any of these “permission” rules are violated when updating
uid_map and gid_map files, write() fails with EPERM:

Each map may be updated only once

Writer must be in target user NS or in parent user NS

The mapped IDs must have a mapping in parent user NS

Writer must have following capability in target user NS

CAP_SETUID for uid_map

CAP_SETGID for gid_map

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-23 §6.3

Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:

Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:

⇒ no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)

Or: otherwise, all of the following restrictions apply:

Only a single line may be written to uid_map (gid_map)

That line maps only the writer’s eUID (eGID)

Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

eUID of writer must match eUID of creator of NS

(eUID restriction also applies for gid_map)

For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

(Fix for a security bug in earlier kernels)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-24 §6.3



Example: updating a mapping file

Going back to our earlier example:

$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted
$ echo 'deny' > /proc/2810/setgroups
$ echo '0 1000 1' > /proc/2810/gid_map
$ cat /proc/2810/gid_map

0 1000 1

After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

Upon returning to window running demo_userns, we see:

eUID = 0; eGID = 0; capabilities: =ep

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-25 §6.3

Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29



Exercises

1 Try replicating the steps shown earlier on your system:

Use the id(1) command to discover your UID and GID; you will need this
information for a later step.

Run the namespaces/demo_userns.c program with an argument (any
string), so it loops. Verify that the child process has all capabilities.

Inspect (readlink(1)) the /proc/PID/ns/user symlink for the demo_userns

child process and compare it with the /proc/PID/ns/user symlink for a shell
running in the initial user namespace (for the latter, simply open a new shell
window on your desktop). You should find that the two processes are in
different user namespaces.

From a shell in the initial user NS, define UID and GID maps for the
demo_userns child process (i.e., for the UID and GID that you discovered
in the first step). Map the ID-outside-ns value for both IDs to IDs of your
choice in the inner NS.

This step will involve writing to the uid_map, setgroups, and
gid_map files in the /proc/PID directory.

Verify that the UID and GID displayed by the looping demo_userns program
have changed.

[Further exercises follow on the next slide]

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-27 §6.4

Exercises

2 What are the contents of the UID and GID maps of a process in the initial user
namespace?

$ cat /proc/1/uid_map

3 U The script namespaces/show_non_init_uid_maps.sh shows the processes on
the system that have a UID map that is different from the init process (PID 1).
Included in the output of this script are the capabilities of each processes. Run this
script to see examples of such processes. As well as noting the UID maps that these
processes have, observe the capabilities of these processes.

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-28 §6.4



Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-26
6.5 Combining user namespaces with other namespaces 6-29

Combining user namespaces with other namespaces

Creating other (non-user) NSs requires CAP_SYS_ADMIN

Creating user NSs requires no capabilities

And process in new user NS gets full capabilities

⇒ We can create a user NS, and then create other NS types
inside that user NS

I.e., two clone() or unshare() calls

Actually, we can achieve desired result in one call; e.g.:

clone(child_func, stackptr, CLONE_NEWUSER | CLONE_NEWUTS, arg);
// or
unshare(CLONE_NEWUSER | CLONE_NEWUTS);

Kernel creates user NS first, then other NS types

And the other NSs are owned by the user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-30 §6.5



Notes

Notes



Linux Security and Isolation APIs Essentials

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11
7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23



Outline

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11
7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23

What are the rules that determine
the capabilities that a process

has in a given user namespace?

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-4 §7.1



User namespace hierarchies

User NSs exist in a hierarchy

Each user NS has a parent, going back to initial user NS

Parental relationship is established when user NS is created:

clone() : parent of new user NS is NS of caller of clone()

unshare() : parent of new user NS is caller’s previous NS

Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-5 §7.1

User namespaces and capabilities

Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in process’s effective set

Which user NS the process is a member of

The process’s effective UID

The effective UID of process that created target user NS

The parental relationship between process’s user NS and
target user NS

See also namespaces/ns_capable.c

(A program that encapsulates the rules described next)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-6 §7.1



Capability rules for user namespaces

1 A process has a capability in a user NS if:

it is a member of the user NS, and

capability is present in its effective set

Note: this rule doesn’t grant that capability in parent NS

2 A process that has a capability in a user NS has the
capability in all descendant user NSs as well

I.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

3 A process in a parent user NS that has same eUID as
eUID of creator of user NS has all capabilities in the NS

At creation time, kernel records eUID of creator as
“owner” of user NS

By virtue of previous rule, process also has capabilities in all
descendant user NSs

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-7 §7.1

Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

Child user NS was created by a process with UID 1000

That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1

Process X has all capabilities in initial user NS

Assume process A and process B have no capabilities in initial user NS

Assume C was first process in child NS and has all capabilities in NS

Process D has no capabilities

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-8 §7.1



Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

Sending a signal requires UID match or CAP_KILL capability

To which of B, C, D can process A send a signal?

Can B send a signal to D? Can D send a signal to B?

Can process X send a signal to processes C and D?

Can process C send a signal to A? To B?

Can C send a signal to D?

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-9 §7.1

Quiz (who can signal a process in a child user NS?)

Initial user NS

Process B

UID = 1001, caps: =

Process A

UID = 1000, caps: =

Process X

UID = 0, caps: =ep

Child user NS

creator UID = 1000

uid_map: 5 1000 10

Process C

UID = 5, caps: =ep

Process D

UID = 6, caps: =

User namespace

"Is user NS

parent of"

A can’t signal B, but can signal C (matching credentials) and D
(because A has capabilities in D’s NS)

B can signal D (matching credentials); likewise, D can signal B

X can signal C and D (because it has capabilities in parent user NS)

C can signal A (credential match), but not B

C can signal D, because it has capabilities in its NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-10 §7.1



Outline

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11
7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23

Exercises

1 As an unprivileged user, start two sleep processes, one as the
unprivileged user and the other as UID 0:

$ id -u
1000
$ sleep 1000 &
$ sudo sleep 2000

As superuser, in another terminal window use unshare to create a user
namespace (–U) with root mappings (–r) and run a shell in that
namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

(Root mappings == process’s UID and GID in parent NS map to
0 in child NS)

Setting the SUDO_PS1 environment variable causes sudo(8) to set the PS1

environment variable for the command that it executes. (PS1 defines the
prompt displayed by the shell.) The bash --norc option prevents the
execution of shell start-up scripts that might change PS1.

[Exercises continue on next slide]

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-12 §7.2



Exercises

Verify that the shell has a full set of capabilities and a UID map
“0 0 1” (i.e., UID 0 in the parent namespace maps to UID 0 in the
child user namespace):

ns2# grep -E 'Cap(Prm|Eff)' /proc/$$/status
ns2# cat /proc/$$/uid_map

From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs
...
ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-13 §7.2

Outline

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11
7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23



User namespaces and capabilities

Kernel grants initial process in new user NS a full set of
capabilities

But, those capabilities are available only for operations on
objects governed by the new user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-15 §7.3

User namespaces and capabilities

Kernel associates each non-user NS instance with a
specific user NS instance

Each non-user NS is “owned” by a user NS

When creating a new non-user NS, user NS of the creating
process becomes the owner of the new NS

Suppose a process operates on global resources governed by
a (non-user) NS:

Privilege checks are done according to process’s capabilities
in user NS that owns the NS

⇒ User NSs can deliver full capabilities inside a user NS
without allowing capabilities in outer user NS(s)

(Barring kernel bugs)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-16 §7.3



User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis 

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is 

member o
f

is member of

Example scenario; X was created with: unshare -Ur -u <prog>

X is in a new user NS, created with root mappings

X is in a new UTS NS, which is owned by new user NS

X is in initial instance of all other NS types (e.g., network NS)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-17 §7.3

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis 

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is 

member o
f

is member of

Suppose X tries to change host name (CAP_SYS_ADMIN)

E.g., hostname bienne

X is in second UTS NS

Privileges checked according to X’s capabilities in user NS that owns
that UTS NS ⇒ succeeds (X has capabilities in user NS)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-18 §7.3



User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis 

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is 

member o
f

is member of

Suppose X tries to bring network device up/down (CAP_NET_ADMIN)

E.g., ip link set dev lo down

X is in initial network NS

Privileges checked according to X’s capabilities in user NS that owns
network NS ⇒ attempt fails (no capabilities in initial user NS)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-19 §7.3

Containers and namespaces

Initial
user NS

Initial
UTS NS

Child
user NS

Initial
PID NS

Initial
mnt NS

Initial
NW NS

UTS NS
(hostname)

PID NS mnt NS
(mnt list)

NW NS
(NW infra.)

init process
(PID 1)

caps: =ep
Container

is child of

(a user NS)

is owned by

(a user NS)

is member of

(a NS)

Not all

NSs are

shown

“Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS

And does not have privilege in outside user NS

(E.g., can’t change mounts seen by processes outside container)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-20 §7.3



Demo: effect of capabilities in a user NS

Create a shell in new user and UTS NSs:

$ unshare -Ur -u bash
# getpcaps $$
929: =ep # Shell has all capabilities in its user NS

Since this shell has all capabilities in user NS that owns its
UTS NS, we can change hostname:

# hostname
bienne
# hostname langwied
# hostname
langwied

But, this shell is in a network NS owned by initial user NS,
and so can’t turn a NW device down:

# ip link set dev lo down
RTNETLINK answers: Operation not permitted

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-21 §7.3

What about resources not governed by namespaces?

Some privileged operations relate to resources/features not
(yet) governed by any namespace

E.g., load kernel modules, raise process nice values

Having all capabilities in a (noninitial) user NS doesn’t grant
power to perform operations on features not currently
governed by any NS

E.g., load/unload kernel modules, raise process nice values

IOW: to perform these operations, process must have the
relevant capability in the initial user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-22 §7.3



Outline

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3
7.2 Exercises 7-11
7.3 What does it mean to be superuser in a namespace? 7-14
7.4 Homework exercises 7-23

Homework exercises

1 Using two terminal windows, and suitable unshare and nsenter
commands, construct a scenario where, in addition to the initial user
namespace, there is also a child user namespace and a grandchild user
namespace. In this scenario, the grandchild user namespace has a
member process (running, say, sleep(1)), but the child namespace does
not have (i.e., no longer has) a member process. Even though the child
namespace has no member processes, it is nevertheless pinned into
existence by virtue of being the parent of the grandchild namespace.

Once you have set up the scenario, verify the hierarchical
relationship of the user namespaces and that the child user namespace
has no member processes, using either of the following commands:

$ sudo lsns -t user --tree=owner -p $(pidof sleep)
$ cd lsp/namespaces; sudo go run namespaces_of.go --namespaces=user

In the output of lsns, you should see the value 0 for NPROCS (the
number of processes in the namespace).

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-24 §7.4



Linux Security and Isolation APIs Essentials

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41



Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41

Goals

We’ll focus on:

General principles of operation; goals of cgroups

The cgroup2 filesystem

Interacting with cgroup2 filesystem using shell commands

By 2021, all major distros switched to cgroups v2, so we’ll
ignore cgroups v1

We’ll look briefly at some of the controllers

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-4 §8.1



Resources

Kernel documentation files

V2: Documentation/admin-guide/cgroup-v2.rst

V1: Documentation/admin-guide/cgroup-v1/*.rst

Before Linux 5.3: Documentation/cgroup-v1/*.txt

cgroups(7) manual page

Chris Down, 7 years of cgroup v2,
https://www.youtube.com/watch?v=LX6fMlIYZcg

Neil Brown’s (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/

Thought-provoking ideas on the meaning of grouping & hierarchy

https://lwn.net/Articles/484254/ – Tejun Heo’s initial thoughts
about redesigning cgroups (Feb 2012)

See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

Other articles at https://lwn.net/Kernel/Index/#Control_groups

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-5 §8.1

Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups


What are control groups?

Two principal components:

A mechanism for hierarchically grouping processes

A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

Interface is via a pseudo-filesystem

Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands

Programmatically

Via management daemon (e.g., systemd)

Via your container framework’s tools (e.g., LXC, Docker)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-7 §8.2

What do cgroups allow us to do?

Limit resource usage of group

E.g., limit % of CPU available to group; limit amount of
memory that group can use

Resource accounting

Measure resources used by processes in group

Limit device access

Pin processes to CPU cores

Shape network traffic

Freeze a group

Freeze, restore, and checkpoint a group

And more...

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-8 §8.2



Terminology

Control group: a group of processes that are bound
together for purpose of resource management

(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpu controller
limits CPU usage

Also known as subsystem

(But that term is rather ambiguous because so generic)

Cgroups are arranged in a hierarchy

Each cgroup can have zero or more child cgroups

Child cgroups inherit control settings from parent

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-9 §8.2

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

Each subdirectory contains automagically created files

Some files are used to manage the cgroup itself

Other files are controller-specific

Files in cgroup are used to:

Define/display membership of cgroup

Control behavior of processes in cgroup

Expose information about processes in cgroup (e.g.,
resource usage stats)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-10 §8.2



The cgroup2 filesystem

On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup

# mount -t cgroup2 none /sys/fs/cgroup

The cgroups v2 mount is sometimes known as the “unified
hierarchy”

Because all controllers are associated with a single hierarchy

By contrast, in v1 there were multiple hierarchies

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-11 §8.2

Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41



Example: the pids controller

pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

Create new cgroup, and place shell’s PID in that cgroup:

# mkdir /sys/fs/cgroup/mygrp
# echo $$
17273
# echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

cgroup.procs defines/displays PIDs in cgroup

(Note ’#’ prompt ⇒ all commands done as superuser)

Moving a PID into a group automatically removes it from
group of which it was formerly a member

I.e., a process is always a member of exactly one group in
the hierarchy

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-13 §8.3

Example: the pids controller

Can read cgroup.procs to see PIDs in group:

# cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

Where did PID 20591 come from?

PID 20591 is cat command, created as a child of shell

Child process inherits cgroup membership from parent

pids.current shows how many processes are in group:

# cat /sys/fs/cgroup/mygrp/pids.current
2

Two processes: shell + cat

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-14 §8.3



Example: the pids controller

We can limit number of PIDs in group using pids.max file:

# echo 5 > /sys/fs/cgroup/mygrp/pids.max
# for a in $(seq 1 5); do sleep 60 & done
[1] 21283
[2] 21284
[3] 21285
[4] 21286
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

(The shell retries a few times and then gives up)

pids.max defines/exposes limit on number of PIDs in
cgroup

From a different shell, examine pids.current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

Not possible from first shell (can’t create more processes)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-15 §8.3

Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41



Creating cgroups

Initially, all processes on system are members of root
cgroup

New cgroups are created by creating subdirectories under
cgroup mount point:

# mkdir /sys/fs/cgroup/mygrp

Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-17 §8.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory

Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-18 §8.4



Placing a process in a cgroup

To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

# echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

In multithreaded process, moves all threads to cgroup

" Can write only one PID at a time

Otherwise, write() fails with EINVAL

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-19 §8.4

Viewing cgroup membership

To see PIDs in cgroup, read cgroup.procs file

PIDs are newline-separated

Zombie processes do not appear in list

" List is not guaranteed to be sorted or free of
duplicates

PID might be moved out and back into cgroup or recycled
while reading list

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-20 §8.4



Cgroup membership details

A process can be member of just one cgroup

That association defines attributes / parameters that apply
to the process

Adding a process to a different cgroup automatically
removes it from previous cgroup

On fork(), child inherits cgroup membership(s) of parent

Afterward, cgroup membership(s) of parent and child can
be independently changed

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-21 §8.4

/proc/PID/cgroup file

/proc/PID/cgroup shows cgroup memberships of PID

0::/grp1

On a system booted in v2-only mode, there is just one line
in this file (0::...)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-22 §8.4



Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41

Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-24 §8.5



Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-25 §8.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-26 §8.5



Exercises

1 In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).

Execute the following command, and note the PID assigned to
the resulting process:

# sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

Now write the PID of the process into the file m2/cgroup.procs.

Is the PID still visible in the file m1/cgroup.procs? Explain.

Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?

If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-27 §8.5

Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41



Enabling and disabling controllers

Each cgroup v2 directory contains two files:

cgroup.controllers: lists controllers that are available
in this cgroup

cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

Always a subset of cgroup.controllers

Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-29 §8.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

cgroup.controllers lists the controllers that are available
in a cgroup

Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

devices, freezer, network, perf_event

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-30 §8.6



Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

A controller may not be available because:
Controller is not enabled in parent cgroup

(Does not apply for “automatic” controllers)

Controller was disabled at boot time

Using the boot option cgroup_disable=name[,...]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-31 §8.6

Enabling controllers: cgroup.subtree_control

cgroup.subtree_control is used to show or modify the
set of controllers that are enabled in a cgroup:

# cd /sys/fs/cgroup/
# cat cgroup.subtree_control
cpu io memory pids

Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

I.e., can’t enable controller that is not available in a cgroup

Controllers are enabled/disabled by writing to this file:

# echo '+cpuset' > cgroup.subtree_control # Enable a controller
# cat cgroup.subtree_control
cpuset cpu io memory pids
# echo '-cpuset' > cgroup.subtree_control # Disable a controller
# cat cgroup.subtree_control
cpu io memory pids

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-32 §8.6



Enabling controllers: cgroup.subtree_control

Enabling a controller in cgroup.subtree_control:

Allows resource to be controlled in child cgroups

Causes controller-specific attribute files to appear in
each child directory

Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-33 §8.6

cgroup.subtree_control example

Review situation in root cgroup:

# cd /sys/fs/cgroup/
# cat cgroup.controllers
cpuset cpu io memory hugetlb pids misc
# cat cgroup.subtree_control
cpu io memory pids

Create a small subhierarchy:

# mkdir -p grp_x/grp_y

Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:

# cat grp_x/cgroup.controllers
cpu io memory pids
# cat grp_x/cgroup.subtree_control # Empty...

Consequently, no controllers are available in grp_y:

# cat grp_x/grp_y/cgroup.controllers # Empty...

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-34 §8.6



cgroup.subtree_control example

List cpu.* files in grp_y:

# cd /sys/fs/cgroup/grp_x
# ls grp_y/cpu.*
grp_y/cpu.pressure grp_y/cpu.stat

(These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:

# echo '+cpu' > cgroup.subtree_control
# ls grp_y/cpu.*
grp_y/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp_y/cpu.weight

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-35 §8.6

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...

Set hard CPU limit of 50% in child cgroup (grp_y):

# echo '50000 100000' > grp_y/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:

# echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:

$ ./cpu_burner
[6445] %CPU = 99.86
[6445] %CPU = 99.83
...
[6445] %CPU = 83.52
[6445] %CPU = 50.00
[6445] %CPU = 50.00
...

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-36 §8.6



Managing controllers to differing levels of granularity

A controller is available in child cgroup only if it is
enabled in parent cgroup:

# cat cgroup.controllers
cpuset cpu io memory hugetlb pids
# cat cgroup.subtree_control
cpu memory pids
# cat grp1/cgroup.controllers
cpu memory pids

cpuset, io, and hugetlb are not available in grp1

In grp1, none of the available controllers is initially enabled,
so no controllers are available at next level:

# cat grp1/cgroup.controllers
cpu memory pids
# cat grp1/cgroup.subtree_control # Empty
# mkdir grp1/{grp10,grp11} # Make grandchild cgroups
# cat grp1/grp2/cgroup.controllers # Empty

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-37 §8.6

Managing controllers to differing levels of granularity

If we enable cpu in grp1, it becomes available at next level

# echo '+cpu' > grp1/cgroup.subtree_control
# cat grp1/grp10/cgroup.controllers
cpu

And cpu interface files appear in grp1/{grp10,grp11}

Here, cpu is being managed at finer granularity than memory

We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grp11

But we can’t make distinct memory allocation decisions

grp10 and grp11 will share memory allocation from grp1

We did this by design (so we can manage different
resources to different levels of granularity):

We want distinct CPU allocations in grp10 and grp11

We want grp10 and grp11 to share a memory allocation

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-38 §8.6



Top-down constraints

Child cgroups are always subject to any resource constraints
established in ancestor cgroups

⇒ Descendant cgroups can’t relax constraints imposed by
ancestor cgroups

If a controller is disabled in a cgroup (i.e., not present in
cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-39 §8.6

No internal tasks rule

Cgroups v2 enforces a rule often expressed as: “a cgroup
can’t have both child cgroups and member processes”

I.e., only leaf nodes can have member processes

The “no internal tasks” rule

But the rule more precisely is:
A cgroup can’t both:

distribute a resource to child cgroups (i.e., enable
controllers in cgroup.subtree_control), and

have member processes

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-40 §8.6



Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
8.2 What are control groups? 8-6
8.3 An example: the pids controller 8-12
8.4 Creating, destroying, and populating a cgroup 8-16
8.5 Exercises 8-23
8.6 Enabling and disabling controllers 8-28
8.7 Exercises 8-41

Exercises

1 This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

To simplify the following steps, change your current directory to
the cgroup root directory (i.e., the location where the cgroup2

filesystem is mounted; on recent systemd-based systems, this will
be /sys/fs/cgroup, or possibly /sys/fs/cgroup/unified).

Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:

# mkdir xxx
# mkdir xxx/yyy
# echo '+pids' > cgroup.subtree_control
# echo '+pids' > xxx/cgroup.subtree_control

[Exercise continues on next page...]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-42 §8.7



Exercises

Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:

# echo '10' > xxx/pids.max
# echo '20' > xxx/yyy/pids.max

In another terminal, use the supplied cgroups/fork_bomb.c

program.

fork_bomb <num-children> [<child-sleep>]
# Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:

$ ./fork_bomb 30

[Exercise continues on next page...]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-43 §8.7

Exercises

The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:

# echo parent-PID > xxx/yyy/cgroup.procs

In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-44 §8.7



Linux Security and Isolation APIs Essentials

Control Groups (cgroups): Other
Controllers

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18



Outline

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18

Cgroups v2 controllers

Initial release of cgroups v2 (Linux 4.5), did not include
equivalents of all v1 controllers

Remaining controllers were added later, with last appearing
in Linux 5.6

Documentation/admin-guide/cgroup-v2.rst documents
v2 controllers

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-4 §9.1



Summary of cgroups controllers

The following table summarizes some info about controllers that are provided in cgroups v1
and v2, including kernel versions where the controllers first appeared

V1 controller Linux V2 equivalent Linux
cpu 2.6.24 (& 3.2) cpu + 4.15
cpuacct 2.6.24 cpu + 4.15
cpuset 2.6.24 cpuset + 5.0
memory 2.6.25 memory 4.5
devices 2.6.26 devices * 4.15
freezer 2.6.26 freezer * 5.2
net_cls 2.6.29 network * 4.5
net_prio 3.3 network * 4.5
blkio 2.6.33 io 4.5
perf_event 2.6.39 perf_event * + 4.11
hugetlb 3.6 hugetlb 5.6
pids 4.3 pids + 4.5
rdma 4.3 rdma 4.11
n/a - misc 5.13

(*) V2 “automatic” controllers (always available, not listed in cgroup.controllers)

(+) V2 threaded controllers

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-5 §9.1

Cgroups v2 controllers

Each of the controllers is selectable via a kernel
configuration option

And there is an overall option, CONFIG_CGROUPS

For each controller, there are controller-specific files in each
cgroup directory

Names are prefixed with controller-specific string

E.g., cpu.weight, memory.max, pids.current

In following slides we look at a couple of example controllers

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-6 §9.1



Outline

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18

The cpu controller

cpu: control and accounting of CPU usage

cpu.stat provides statistics on CPU used by cgroup

# cat mygrp/cpu.stat
usage_usec 345928360
user_usec 195880335
system_usec 150048024
...

Values (expressed in µs) include total CPU (kernel+user)
time, and time broken down info kernel and user mode

Values are totals of time consumed by processes while they
reside in cgroup

Statistics include CPU consumed in descendant cgroups

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-8 §9.2



The cpu controller

cpu controller provides two modes to control distribution of
CPU cycles to cgroups:

Proportional-weight mode

Absolute-bandwidth mode

Default is proportional-weight mode

Absolute-bandwidth mode is used if quota limit is set in
cpu.max

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-9 §9.2

cpu controller: proportional-weight mode

cpu proportional-weight mode:

cpu.weight file defines proportion of CPU given to cgroup

Default is 100; permitted range is 1..10000

Proportion of CPU given to cgroup defined by quotient:
(cpu.weight / [sum of all cpu.weight at same level])

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-10 §9.2



cpu controller: proportional-weight mode

/

B
weight=2000

A
weight=1000

C
weight=1000

X
weight=100

Y
weight=400

Processes in B get 2000
1000+2000+1000 = 1

2 of CPU time

Processes in A and C each get 1000
1000+2000+1000 = 1

4 of CPU time

Processes in X get 2000
1000+2000+1000 · 100

100+400 = 1
2 · 1

5 = 1
10 of CPU time

Processes in Y get 2000
1000+2000+1000 · 400

100+400 = 1
2 · 4

5 = 4
10 of CPU time

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-11 §9.2

cpu controller: proportional-weight mode

cpu proportional-weight mode:

Constraints have effect only if there is competition for
CPU

No effect until [# CPU-bound processes] > [# CPUs]

For experiments, use taskset(1) to constrain multiple
processes to same CPU

Constraints propagate proportionally into child cgroups

I.e., child cgroups further subdivide proportion given to
parent cgroup

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-12 §9.2



cpu controller: absolute-bandwidth mode

cpu absolute-bandwidth mode:

Used to set absolute limit on CPU that can be consumed per
defined period

Limit is defined by writing two values to cpu.max:

echo '<quota> <period>' > cpu.max

period : measurement period for CFS scheduler (microsecs;
range: [1000..1’000’000]; default: 100’000)

Larger period means CPU is allocated in longer bursts (i.e.,
1000/2000 is not same as say 50’000/100’000)

quota : allowed run-time within period (range: ≥ 1000)

quota/period expresses fraction of one CPU; can be > 1

If cgroup exhausts its quota within a given period, it is
throttled until the next period

Default: max == no limit/inherit quota from parent

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-13 §9.2

cpu controller: absolute-bandwidth mode

cpu absolute-bandwidth mode:

Quota is enforced even if no other competitors for CPU

Parent quota is a cap for child quota

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-14 §9.2



cpu controller: absolute-bandwidth mode

A
quota=50000

Q
quota=20000

P
quota=40000

R
quota=10000

X
quota=30000

Assume that period is 100’000 in all cgroups

Processes under A will get maximum of 50% of (one) CPU

Processes under Q will get maximum of 20% of CPU

Processes under X will get maximum of 20% of CPU
(capped by Q)

Note that sibling cgroups under A are oversubscribed (they
won’t get 70% of CPU)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-15 §9.2

Outline

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18



The freezer controller

freezer: freeze (suspend) and thaw (resume) processes in a
cgroup

Cgroup is frozen/thawed by writing 1/0 to cgroup.freeze

Operations propagate to descendant cgroups

cgroup.freeze is not present in root cgroup

Useful for container migration and checkpoint/restore

And, e.g., docker pause

Gets around some limitations of using SIGSTOP/SIGCONT for
this purpose

SIGSTOP is observable by waiting parent or ptracer

SIGCONT can be caught by application!

Observability of these signals can cause behavior changes in
applications

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-17 §9.3

Outline

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 9-16
9.4 Exercises 9-18



Exercises

1 The cpu controller implements bandwidth-based throttling of CPU usage.
Throttling is specified by writing a pair of numbers to cpu.max:

# echo '<quota> <period>' > cpu.max

period : the period used for allocating CPU bandwidth (µsec; default
100’000).

quota : the portion of the period available to this cgroup (µsec; default
“max”, meaning no limit).

Perform the following experiments:

Check the cgroup.subtree_control file in the root cgroup to see if the cpu

controller is enabled, and if it is not, enable it.

Create two sibling CPU cgroups, named fast and slow. In the fast cgroup,
set a quota of 30’000 and a period of 100’000:

# echo '30000 100000' > fast/cpu.max

In the slow cgroup, set quota to 10’000 and period to 100’000.

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-19 §9.4

Exercises

Run two instances of the timers/cpu_burner.c program, which consumes
CPU time. The program prints a message every second that includes the
percentage of CPU time it received during that second. (i.e.,
CPU-time / elapsed-time). Place the two instances in the different CPU
cgroups, and observe the effect on the rate of execution of the two programs.
What happens if you adjust the quota to 50’000 in the slow cgroup?

Suspend the two cpu_burner processes using control-Z and then check how
much CPU time has been consumed in each cgroup by examining the
usage_usec field in the file cpu.stat in each directory. This field shows
CPU usage in microseconds, which can be converted to seconds using
commands such as the following:

$ awk '/usage_usec/ {print $2 / 1000000}' < slow/cpu.stat
$ awk '/usage_usec/ {print $2 / 1000000}' < fast/cpu.stat

If you move the process in the slow cgroup to the fast cgroup, does this
change the usage_usec value in either of the cpu.stat files?

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-20 §9.4



Exercises

2 The freezer controller can be used to suspend and resume execution of all of the
processes in a cgroup hierarchy. (Note that the freezer controller is one of the
“automatic” controllers; it is always available, and doesn’t need to be enabled in
cgroup.subtree_control.)

Create a cgroup hierarchy containing two child cgroups (thus three cgroups in total)
as follows:

# mkdir /sys/fs/cgroup/mfz
# mkdir /sys/fs/cgroup/mfz/sub1
# mkdir /sys/fs/cgroup/mfz/sub2

Then run four separate instances of the timers/cpu_burner.c program (in four
separate terminal windows), and place two of the resulting processes in the
mfz/sub1 cgroup, and one process in each of mfz and mfz/sub2. Arrange your
screen so that you can see all four terminal windows simultaneously. Observe what
happens to these processes as each of the following commands are executed.

Freeze the processes in the mfz/sub1 cgroup:

# echo 1 > /sys/fs/cgroup/mfz/sub1/cgroup.freeze

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-21 §9.4

Exercises

Freeze all of the processes in all cgroups under the mfz subtree:

# echo 1 > /sys/fs/cgroup/mfz/cgroup.freeze

Thaw the mfz subtree (which processes resume execution?):

# echo 0 > /sys/fs/cgroup/mfz/cgroup.freeze

Once more freeze the entire mfz subtree, and then try thawing just the processes in
the mfz/sub1 cgroup:

# echo 1 > /sys/fs/cgroup/mfz/cgroup.freeze
# echo 0 > /sys/fs/cgroup/mfz/sub1/cgroup.freeze

Do the processes in the mfz/sub1 cgroup resume execution? Why not? For a clue,
view the state of this cgroup using the following command:

# grep frozen /sys/fs/cgroup/mfz/sub1/cgroup.events

Try moving one of the processes in the frozen mfz cgroup into the root cgroup.
What happens?

Use the kill -KILL command to send a SIGKILL signal to a process in a frozen
cgroup? Is the process killed immediately? (A design bug in cgroups v1 meant that
the process was not killed immediately in this scenario.)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-22 §9.4



Notes

Notes



Linux Security and Isolation APIs Essentials

Wrapup

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 6f75b3d2e02f

10 Wrapup 10-1
10.1 Wrapup 10-3



Outline

10 Wrapup 10-1
10.1 Wrapup 10-3

Course materials

I’m the (sole) producer of the course book and example
programs

Course materials are continuously revised

Send corrections and suggestions for improvements to
mtk@man7.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Wrapup 10-4 §10.1



Marketing

Independent trainer, consultant, and writer

Author of The Linux Programming Interface

Reputation / word-of-mouth are important for my business...

Let people know about these courses!
Linux/UNIX system programming

Linux security and isolation APIs

Building and using shared libraries

System programming for Linux containers

Linux/UNIX network programming

Subsets/combinations of the above; see next slide

Further courses to be announced: http://man7.org/training/

Security and Isolation APIs Essentials ©2025 M. Kerrisk Wrapup 10-5 §10.1

Course overview (see https://man7.org/training)

Linux/UNIX System Programming (LUSP01, 5 days)

System Programming Fundamentals
(SPINTRO01, 2 days)

Threads and IPC Programming
(TIPC01, 3 days)

IPC Programming
(IPC02, 3 days)

POSIX Threads
(PTHR01, 1 day)

System Programming for Linux Containers (SPLC02, 5 days)

Linux Security and Isolation APIs (SECISOL02, 4 days)

Capabilities + Namespaces
(CAPNS01, 2 days)

Seccomp
(SECCOMP01, 1d)

Control Groups
(CGROUPS02, 1d)

System Prog.
Essentials

(SPESS01, 1d)

Linux Shared Libraries
(SHLIB04, 2.5 days)

Linux/UNIX Network Programming
(NWP03, 3 days)

Nesting indicates a topic that can be taken
either as a separate course or as part of a
longer course

Arrows show a suggested prerequisite course

http://man7.org/training/
https://man7.org/training
https://man7.org/training/lusp/
https://man7.org/training/spintro/
https://man7.org/training/tipc/
https://man7.org/training/ipc/
https://man7.org/training/pthr/
https://man7.org/training/splc/
https://man7.org/training/secisol/
https://man7.org/training/capns/
https://man7.org/training/cgroups/
https://man7.org/training/shlib/
https://man7.org/training/nwp/


Thanks!

mtk@man7.org @mkerrisk linkedin.com/in/mkerrisk

PGP fingerprint: 4096R/3A35CE5E

http://man7.org/training/

Notes

http://man7.org/training/

	Course Introduction   1-1
	Course overview   1-3
	System/software requirements   1-7
	Course materials and resources   1-10
	Common abbreviations   1-13
	Introductions   1-15

	Classical Privileged Programs   2-1
	A simple set-user-ID program   2-3
	Saved set-user-ID and saved set-group-ID   2-11
	Changing process credentials   2-15
	A few guidelines for writing privileged programs   2-18

	Capabilities   3-1
	Overview   3-3
	Process and file capabilities   3-7
	Permitted and effective capabilities   3-13
	Setting and viewing file capabilities   3-16
	Exercises   3-22
	Text-form capabilities   3-28
	Exercises   3-31
	Capabilities and execve()   3-33
	Capabilities and UID transitions   3-36
	Exercises   3-39

	Namespaces   4-1
	Overview   4-3
	An example: UTS namespaces   4-5
	Namespaces commands   4-9
	Namespaces demonstration (UTS namespaces)   4-14
	Namespace types and APIs   4-18
	Mount namespaces   4-24
	PID namespaces   4-31

	Namespaces APIs   5-1
	API Overview   5-3
	Creating a child process in new namespaces: clone()   5-5

	User Namespaces   6-1
	Overview of user namespaces   6-3
	Creating and joining a user namespace   6-6
	User namespaces: UID and GID mappings   6-14
	Exercises   6-26
	Combining user namespaces with other namespaces   6-29

	User Namespaces and Capabilities   7-1
	User namespaces and capabilities   7-3
	Exercises   7-11
	What does it mean to be superuser in a namespace?   7-14
	Homework exercises   7-23

	Cgroups: Introduction   8-1
	Preamble   8-3
	What are control groups?   8-6
	An example: the pids controller   8-12
	Creating, destroying, and populating a cgroup   8-16
	Exercises   8-23
	Enabling and disabling controllers   8-28
	Exercises   8-41

	Cgroups: Other Controllers   9-1
	Overview   9-3
	The cpu controller   9-7
	The freezer controller   9-16
	Exercises   9-18

	Wrapup   10-1
	Wrapup   10-3


