
Linux/UNIX IPC Programming

POSIX Shared Memory

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 8d7fc39ab521

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Outline

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Shared memory

Data is exchanged by placing it in memory pages shared
by multiple processes

Pages are in user virtual address space of each process

Physical memory

Shared memory region

Pages not

actually

contiguous

Process A page table

Page table entries for

shared memory region

Process B page table

Page table entries for

shared memory region

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-4 §13.1

Shared memory

Data transfer is not mediated by kernel
User-space copy makes data visible to other processes

⇒ Very fast IPC

Compare with (e.g.) pipes and sockets:

Send requires copy from user to kernel memory

Receive requires copy from kernel to user memory

But, need to synchronize access to shared memory

E.g., to prevent simultaneous updates

Commonly, semaphores are used

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-5 §13.1

POSIX shared memory objects

Implemented (on Linux) as files in a dedicated tmpfs
filesystem

tmpfs == memory-based filesystem that employs swap
space when needed

Objects have kernel persistence

Objects exist until explicitly deleted, or system reboots

Can map an object, change its contents, and unmap

Changes will be visible to next process that maps object

Accessibility: user/group owner + permission mask

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-6 §13.1

POSIX shared memory APIs

shm_open() : open existing shared memory (SHM)
object/create and open new SHM object

Returns file descriptor that refers to open object

ftruncate() : set size of SHM object

mmap() : map SHM object into caller’s address space

close() : close file descriptor returned by shm_open()

shm_unlink() : remove SHM object name, mark for deletion
once all processes have closed

munmap() : unmap SHM object (or part thereof) from
caller’s address space

Compile with cc -lrt

(No longer needed since glibc 2.34)

shm_overview(7) manual page

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-7 §13.1

Outline

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

Creates and opens a new object, or opens an existing object

name : name of object (/somename)

Returns file descriptor on success, or –1 on error

This FD is used in subsequent APIs to refer to SHM

(The close-on-exec flag is automatically set for the FD)

[TLPI §54.2]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-10 §13.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

oflag specifies flags controlling operation of call

O_CREAT: create object if it does not already exist

O_EXCL: (with O_CREAT) create object exclusively

Give error if object already exists

O_RDONLY: open object for read-only access

O_RDWR: open object for read-write access

NB: No O_WRONLY flag...

O_TRUNC: truncate an existing object to zero length

Contents of existing object are destroyed

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-11 §13.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

mode : permission bits for new object

RWX for user / group / other

ANDed against complement of process umask

" Required argument; specify as 0 if opening existing
object

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-12 §13.2

Sizing a shared memory object

New SHM objects have length 0

We must set size using ftruncate(fd, size)

Bytes in newly extended object are initialized to 0

If existing object is shrunk, truncated data is lost

Typically, ftruncate() is called before mmap()

But the calls can also be in the reverse order

Can obtain size of existing object using fstat(fd, &statbuf)

st_size field of stat structure

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-13 §13.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

Complex, general-purpose API for creating memory
mapping in caller’s virtual address space

15+ bits employed in flags

See TLPI Ch. 49 and mmap(2)

We consider only use with POSIX SHM
In practice, only a few decisions to make

Usually just length, prot, and maybe offset

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-14 §13.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

fd : file descriptor specifying object to map

Use FD returned by shm_open()

Note: once mmap() returns, fd can already be closed
without affecting the mapping

addr : address at which to place mapping in caller’s virtual
address space

Let’s look at a picture...

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-15 §13.2

Process memory layout (simplified)

argv, environ

Stack

(grows downward)

(unallocated memory)

Heap

(grows upward)

Uninitialized data (bss)

Initialized data

Te xt (program code)

Memory

mappings

placed here

Low virtual

address

High virtual

address

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-16 §13.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

addr : address at which to place mapping in caller’s virtual
address space

But, this address may already be occupied

Therefore, kernel takes addr as only a hint

Ignored if address is already occupied

addr == NULL ⇒ let system choose address

Normally use NULL for POSIX SHM objects

mmap() returns address actually used for mapping

Treat this like a normal C pointer

On error, mmap() returns MAP_FAILED

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-17 §13.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

length : size of mapping

Normally should be ≤ size of SHM object

System rounds up to multiple of system page size

sysconf(_SC_PAGESIZE)

offset : starting point of mapping in underlying file or SHM
object

Must be multiple of system page size

Commonly specified as 0 (map from start of object)

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-18 §13.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

prot : memory protections
⇒ set protection bits in page-table entries for mapping

(Protections can later be changed using mprotect(2))

PROT_READ: for read-only mapping

PROT_READ | PROT_WRITE: for read-write mapping

Must be consistent with access mode of shm_open()

E.g., can’t specify O_RDONLY to shm_open() and then
PROT_READ | PROT_WRITE for mmap()

Also PROT_EXEC: contents of memory can be executed

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-19 §13.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot,

int flags, int fd, off_t offset);

flags : bit flags controlling behavior of call

POSIX SHM objects: need only MAP_SHARED

MAP_SHARED == make caller’s modifications to mapped
memory visible to other processes mapping same object

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-20 §13.2

Example: pshm/pshm_create_simple.c

./pshm_create_simple /shm-object-name size

Create a SHM object with given name and size

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-21 §13.2

Example: pshm/pshm_create_simple.c

size_t size = atoi(argv[2]);

int fd = shm_open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR|S_IWUSR);

ftruncate(fd, size);

void *addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

1 SHM object created with RW permission for user, opened
with read-write access mode

2 fd returned by shm_open() is used in ftruncate() + mmap()

3 Same size is used in ftruncate() + mmap()

4 mmap() not necessary, but demonstrates how it’s done

5 Mapping protections PROT_READ | PROT_WRITE consistent
with O_RDWR access mode

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-22 §13.2

Outline

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Using shared memory objects

Address returned by mmap() can be used just like any C
pointer

Usual approach: treat as pointer to some structured type

Can read and modify memory via pointer

[TLPI §48.6]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-24 §13.3

Example: pshm/pshm_write.c

./pshm_write /shm-name string

Open existing SHM object shm-name and copy string to it

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-25 §13.3

Example: pshm/pshm_write.c

int fd = shm_open(argv[1], O_RDWR, 0);
size_t len = strlen(argv[2]);
ftruncate(fd, len);
printf("Resized to %ld bytes\n", (long) len);

char *addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close(fd); /* 'fd' is no longer needed */

printf("copying %ld bytes\n", (long) len);
memcpy(addr, argv[2], len);

1 Open existing SHM object

2 Resize object to match length of command-line argument

3 Map object at address chosen by system

4 Copy argv[2] to object (without ’\0’)

5 SHM object is closed and unmapped on process termination

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-26 §13.3

Example: pshm/pshm_read.c

./pshm_read /shm-name

Open existing SHM object shm-name and write the
characters it contains to stdout

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-27 §13.3

Example: pshm/pshm_read.c

int fd = shm_open(argv[1], O_RDONLY, 0);

struct stat sb;
fstat(fd, &sb);

char *addr = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);

close(fd); /* 'fd' is no longer needed */

write(STDOUT_FILENO, addr, sb.st_size);
write(STDOUT_FILENO, "\n", 1);

Open existing SHM object

Use fstat() to discover size of object

Map the object, using size from fstat() (in sb.st_size)

Write all bytes from object to stdout, followed by newline

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-28 §13.3

Pointers in shared memory

A little care is required when storing pointers in SHM:

Assuming we let system choose address at which to place
SHM (as is recommended practice)

⇒ SHM may be placed at different address in each process

Suppose we want to build dynamic data structures, with
pointers inside shared memory...

E.g., linked list

⇒ Must use relative offsets, not absolute addresses

Absolute address has no meaning if mapping is at different
location in another process

[TLPI §48.6]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-29 §13.3

Pointers in shared memory

Suppose we have situation at right

baseaddr is start of shared
memory region

Want to store pointer to target
in *p

" Wrong way:

*p = target

Correct method (relative offset):

*p = target - baseaddr;

To dereference “pointer”:

target = baseaddr + *p;

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-30 §13.3

The /dev/shm filesystem

On Linux:

tmpfs filesystem used to implement POSIX SHM is mounted at
/dev/shm

Can list objects in directory with ls(1)

ls –l shows permissions, ownership, and size of each object

$ ls -l /dev/shm
-rw-------. 1 mtk mtk 4096 Oct 27 13:58 myshm
-rw-------. 1 mtk mtk 32 Oct 27 13:57 sem.mysem

POSIX named semaphores are also visible in /dev/shm

As small SHM objects with names prefixed with “sem.”

Can delete objects with rm(1)

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-31 §13.3

Outline

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Synchronizing access to shared memory

Accesses to SHM object by different processes must be
synchronized

Prevent simultaneous updates

Prevent read of partially updated data

Semaphores are a common technique

POSIX unnamed semaphores are often convenient, since:
Semaphore can be placed inside shared memory region

(And thus, automatically shared)

We avoid task of creating name for semaphore

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-34 §13.4

Synchronizing access to shared memory

Other synchronization schemes are possible
E.g., if using SHM to transfer large data volumes:

Using semaphore pair to force alternating access is
expensive (two context switches on each transfer!)

Divide SHM into (logically numbered) blocks

Use pair of pipes to exchange metadata about filled and
emptied blocks (also integrates with poll()/epoll !)

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-35 §13.4

Example: synchronizing with unnamed semaphores

Example application maintains sequence number in SHM
object

Source files:

pshm/pshm_seqnum.h: defines structure stored in SHM
object

pshm/pshm_seqnum_init.c:

Create and open SHM object

Initialize semaphore and (optionally) sequence number
inside SHM object

pshm/pshm_seqnum_get.c:

Open existing SHM object

Display current value of sequence number

(Optionally) increase sequence number value

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-36 §13.4

Example: pshm/pshm_seqnum.h

#include <sys/mman.h>
#include <fcntl.h>
#include <semaphore.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

struct shmbuf { /* Shared memory buffer */
sem_t sem; /* Semaphore to protect access */
int seqnum; /* Sequence number */

};

Header file used by pshm/pshm_seqnum_init.c and
pshm/pshm_seqnum_get.c

Includes headers needed by both programs

Defines structure used for SHM object, containing:
Unnamed semaphore that guards access to sequence
number

Sequence number

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-37 §13.4

Example: pshm/pshm_seqnum_init.c

./pshm_seqnum_init /shm-name [init-value]

Create and open SHM object

Reset semaphore inside object to 1 (i.e., semaphore
available)

Initialize sequence number

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-38 §13.4

Example: pshm/pshm_seqnum_init.c

shm_unlink(argv[1]);
int fd = shm_open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR | S_IWUSR);

ftruncate(fd, sizeof(struct shmbuf));
struct shmbuf *shmp = mmap(NULL, sizeof(struct shmbuf),

PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
sem_init(&shmp->sem, 1, 1);
if (argc > 2)

shmp->seqnum = atoi(argv[2]);

1 Delete previous instance of SHM object, if it exists

2 Create and open SHM object

3 Use ftruncate() to adjust size of object to match structure

4 Map object, using size of structure

5 Initialize semaphore state to “available”
pshared specified as 1, for process sharing of semaphore

6 If argv[2] supplied, initialize sequence # to that value
Newly extended bytes of SHM object are initialized to 0

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-39 §13.4

Example: pshm/pshm_seqnum_get.c

./pshm_seqnum_get /shm-name [run-length]

Open existing SHM object

Fetch and display current value of sequence number in SHM
object shm-name

If run-length supplied, add to sequence number

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-40 §13.4

Example: pshm/pshm_seqnum_get.c

int fd = shm_open(argv[1], O_RDWR, 0);

struct shmbuf *shmp = mmap(NULL, sizeof(struct shmbuf),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

Open existing SHM object

Map object, using size of shmbuf structure

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-41 §13.4

Example: pshm/pshm_seqnum_get.c

sem_wait(&shmp->sem);
printf("Current value of sequence number: %d\n", shmp->seqnum);

if (argc > 2) {
int runLength = atoi(argv[2]);
if (runLength <= 0)

fprintf(stderr, "Invalid run-length\n");
else {

sleep(3); /* Make update slow */
shmp->seqnum += runLength;
printf("Updated sequence number\n");

}
}
sem_post(&shmp->sem);

Reserve semaphore before touching sequence number

Display current value of semaphore

If (nonnegative) argv[2] provided, add to sequence number

Sleep during update, to see that other processes are blocked

Release semaphore

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-42 §13.4

Outline

13 POSIX Shared Memory 13-1
13.1 Overview 13-3
13.2 Creating and opening shared memory objects 13-8
13.3 Using shared memory objects 13-23
13.4 Synchronizing access to shared memory 13-32
13.5 Exercises 13-43

Exercise

1 Write two programs that exchange a stream of data of arbitrary length via a POSIX
shared memory object [Shared header file: pshm/pshm_xfr.h]:

The “writer” creates and initializes the shared memory object and
semaphores used by both programs, and then reads blocks of data from stdin
and copies them a block at a time to the shared memory region
[Template: pshm/ex.pshm_xfr_writer.c].

The “reader” copies each block of data from the shared memory object to
stdout [Template: pshm/ex.pshm_xfr_reader.c].

stdin Writer
Shared

Memory Reader stdout

Note the following points:

Use the structure defined in pshm/pshm_xfr.h for your shared memory.

[Exercise continues on next page]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-44 §13.5

Exercise

You must ensure that the writer and reader have exclusive, alternating
access to the shared memory region (so that, for example, the writer does
not copy new data into the region before the reader has copied the current
data to stdout). The following diagram shows how two semaphores can be
used to achieve this. The semaphores should be initialized as wsem=1 and
rsem=0, so that the writer has first access to the shared memory.

sem_wait(wsem)

Transfer data to

shared memory

sem_post(rsem)

Writer

sem_wait(rsem)

Transfer data from

shared memory

sem_post(wsem)

Reader

Shared memory

(The simplest approach is to use two unnamed semaphores stored inside the
shared memory object; see the structure definition in pshm/pshm_xfr.h.)

[Exercise continues on next page]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-45 §13.5

Exercise

When the “writer” reaches end of file, it should provide an indication to the
“reader” that there is no more data. To do this, maintain a byte-count field
in the shared memory region which the “writer” uses to inform the “reader”
how many bytes are to be written. Setting this count to 0 can be used to
signal end-of-file. Once it has sent the last data block, the “writer” should
unlink the shared memory object.

Test your programs using a large file that contains random data:

$ dd if=/dev/urandom of=infile count=100000
$./ex.pshm_xfr_writer < infile &
$./ex.pshm_xfr_reader > outfile
$ diff infile outfile

There is also a target in the Makefile for performing this test:

make pshm_xfr_test

[An optional exercise follows on the next page]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-46 §13.5

Exercise

2 Create a file of a suitable size (e.g., 512 MB in the following):

$ dd if=/dev/urandom of=/tmp/infile count=1000000

Then edit the BUF_SIZE value in the pshm/pshm_xfr.h header file to vary the value
from 10’000 down to 10 in factors of 10, in each case measuring the time required
for the reader to complete execution:

$./ex.pshm_xfr_writer < /tmp/infile &
$ time ./ex.pshm_xfr_reader > /dev/null

What is the reason for the variation in the time measurements?

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 13-47 §13.5

Notes

